вторник, 24 апреля 2018 г.

Estratégia de negociação de séries temporais


Estratégia de troca de séries temporais
Obter através da App Store Leia esta publicação em nosso aplicativo!
Selecionando o cronograma para análise de séries temporais.
Na análise técnica, podemos usar confluência de direção por 3 prazos para avaliar o viés de mercado agora. Da mesma forma, se usarmos métodos de previsão de séries temporais para prever (digamos dados diários - se S & amp; P estão indo mais alto amanhã), quantos dados diários históricos seriam otimizados (aposta 2 semanas-1 meses-3 meses)? Demais ou muito pouco dados passados ​​não fornecem uma previsão precisa.
(1) gerar resultados em intervalos de 5 dias (dentro de 3 meses) até obter a melhor previsão de intervalo mais próxima do valor de encerramento de ontem. Então use esse intervalo para prever o próximo de amanhã?
(2) combinar 3 meses de previsão e backcasting (dados reversos) até que haja um resultado que coincida. então use este dia como ponto de referência inicial para a previsão? spiderfinancial / suporte / documentação / numxl / tips-and-tricks / backward-forecast pakaccountants / what-is-backcasting-and-difference-forecasting /
Você nunca deve começar a perguntar quantos dados você deve incorporar em seu esforço de pesquisa. Você deve começar com os seguintes pontos:
Certifique-se de compreender a diferença entre o tamanho da amostragem para especificar o modelo e os dados usados ​​para testar os testes. Esses são animais completamente diferentes. Primeiro, pense no seu objetivo final, o que você está tentando alcançar. Você procura desenvolver um modelo de negociação de alta freqüência? Se sim, não faz sentido incorporar inteligência de preços de 1 mês atrás. Qual a dinâmica que você está tentando capturar? Se você olhar para os ciclos do mercado comercial, então você deseja incorporar a quantidade de dados que cobre diferentes ciclos de mercado. Que tipo de dados você está tentando analisar? Tick, comprimido, bid / ask vs. trades, dinâmica do livro de pedidos?
Quando você responde a pergunta, provavelmente você terá uma boa idéia quanto de dados que você precisa, a que frequência.

Efeito Momentum da Série de Tempo.
O momento tradicional da seção transversal é uma anomalia popular e muito bem documentada. O impulso tradicional usa um universo de recursos para escolher vencedores do passado, e prevê que esses vencedores continuarão a superar seus pares no futuro também. No entanto, pesquisas acadêmicas recentes mostram que não precisamos de todo o universo de ativos para explorar o efeito momentum. Uma nova versão desta anomalia (Time Series Momentum) mostra que o retorno anterior de cada segurança (ou ativo) é um futuro preditor. O excesso de 12 meses de retorno de cada instrumento é um preditor positivo de seu retorno futuro. Um portfólio diversificado de impulso de séries temporais em todos os ativos é notavelmente estável e robusto, produzindo uma alta relação Sharpe com pouca correlação com benchmarks passivos. Uma vantagem adicional é que os retornos momentâneos das séries temporais parecem ser maiores quando os retornos do mercado de ações são mais extremos; Portanto, o impulso das séries temporais pode ser um hedge para eventos extremos.
Razão fundamental.
A pesquisa acadêmica afirma que o efeito momentum da série temporal é consistente com as teorias comportamentais dos investidores. in-reação inicial e sobre-reação antecipada aplicada à disseminação da informação.
Estratégia de negociação simples.
O universo de investimento consiste em 24 futuros de commodities, 12 pares de moeda cruzada (com 9 moedas subjacentes), 9 índices de ações desenvolvidos e 13 futuros de obrigações governamentais desenvolvidos.
Papel Fonte.
Moskowitz, Ooi, Pedersen: Time Series Momentum.
Nós documentamos o significativo "impulso da série de tempo" nos futuros do índice de ações, moeda, commodities e obrigações para cada um dos 58 instrumentos líquidos que consideramos. Encontramos persistência nos retornos de 1 a 12 meses que se invertem parcialmente em horizontes mais longos, consistentes com as teorias de sentimentos sobre a sub-reação inicial e a reação excessiva. Um portfólio diversificado de estratégias de impulso de séries temporais em todas as classes de ativos oferece retornos anormais substanciais com pouca exposição a fatores padrão de preços de ativos e funciona melhor em mercados extremos. Mostramos que os retornos ao impulso das séries temporais estão intimamente ligados às atividades de negociação de especuladores e hedgers, onde os especuladores parecem se beneficiar com isso em detrimento dos hedgers.
Outros documentos.
Baltas, Kosowski: Trend-following e Momentum Strategies in Futures Markets.
A construção de uma estratégia de impulso de séries temporais envolve a agregação ajustada pela volatilidade de estratégias univariadas e, portanto, depende muito da eficiência do estimador de volatilidade e da qualidade do sinal de negociação momentum. Usando um conjunto de dados com cotações intra-dia de 12 contratos de futuros de novembro de 1999 a outubro de 2009, investigamos essas dependências e sua relação com a lucratividade do momento e atingimos uma série de descobertas novas. Primeiro, os sinais de negociação de impulso gerados ao ajustar uma tendência linear no caminho do preço dos ativos maximizam o desempenho fora da amostra, ao mesmo tempo em que minimizam o roteamento da carteira, dominando, portanto, o sinal de troca de impulso ordinário na literatura, o sinal do retorno passado. Em segundo lugar, os resultados mostram fortes padrões de momentum na freqüência mensal de reequilíbrio, padrões de impulso relativamente fortes na frequência semanal e padrões de momentum relativamente fracos na frequência diária. Na verdade, os efeitos de reversão significativos estão documentados no horizonte de muito curto prazo. Finalmente, no que se refere à agregação ajustada de volatilidade de estratégias univariadas, o estimador da gama Yang-Zhang constitui a escolha ideal para a estimativa de volatilidade em termos de maximização da eficiência e minimização do viés e do roteamento ex post da carteira.
A construção de uma estratégia de impulso de séries temporais envolve a agregação ajustada por volatilidade de estratégias uniféricas e, portanto, depende muito da eficiência do estimador de volatilidade e da qualidade do sinal de negociação momentum. Usando um conjunto de dados com cotações intra-dia de 12 contratos de futuros de novembro de 1999 a outubro de 2009, investigamos essas dependências e sua relação com a lucratividade do momento da série e alcançamos uma série de descobertas novas. Os sinais de troca de impulso gerados pela adequação de uma tendência linear no caminho do preço dos ativos maximizam o desempenho fora da amostra, ao mesmo tempo que minimizam o volume de negócios da carteira, portanto, dominando o sinal de negociação de impulso ordinário na literatura, o sinal de retorno passado. Em relação à agregação ajustada de volatilidade de estratégias univariadas, o estimador da gama Yang-Zhang constitui a escolha ideal para a estimativa de volatilidade em termos de maximização da eficiência e minimização do viés e do roteamento ex post da carteira.
Neste trabalho, estudamos estratégias de impulso de séries temporais em mercados de futuros e sua relação com conselheiros de negociação de commodities (CTAs). Em primeiro lugar, construímos um dos conjuntos mais abrangentes de carteiras de impulso da série temporal, estendendo os estudos existentes em três dimensões: séries temporais (1974-2002), seção transversal (71 contratos) e domínio de freqüência (mensal, semanal, diariamente) . Nossas estratégias de impulso timeseries atingem os índices de Sharpe acima de 1,20 e fornecem importantes benefícios de diversificação devido ao seu comportamento anticíclico. Achamos que as estratégias mensais, semanais e diárias exibem baixa correlação cruzada, o que indica que eles capturam fenômenos de continuação de retorno distintos. Em segundo lugar, fornecemos provas de que os CTAs seguem as estratégias de impulso das séries temporais, mostrando que as estratégias de impulso das séries temporais possuem alto poder explicativo nas séries temporais dos retornos do CTA. Em terceiro lugar, com base nesse resultado, investigamos se existem restrições de capacidade em estratégias de impulso de séries temporais, ao executar regressões preditivas do desempenho da estratégia momentânea em fluxos de capital atrasados ​​para a indústria CTA. De acordo com a visão de que os mercados de futuros são relativamente líquidos, não encontramos evidências de restrições de capacidade e esse resultado é robusto para diferentes classes de ativos. Nossos resultados têm implicações importantes para estudos de hedge funds e investidores.
Estudamos o desempenho do investimento de tendência nos mercados globais desde 1903, ampliando a evidência existente em mais de 80 anos. Nós mostramos que essa tendência - a seguir apresentou fortes retornos positivos e percebeu uma baixa correlação com as classes de ativos tradicionais de cada década há mais de um século. Analisamos os retornos das tendências seguindo vários ambientes econômicos e destacamos os benefícios de diversificação que a estratégia tem providenciado historicamente em mercados com base em ações. Finalmente, avaliamos o ambiente recente para a estratégia no contexto desses resultados de longo prazo.
As variações de várias estratégias de impulso são examinadas em uma configuração de alocação de ativos, bem como para um conjunto de carteiras da indústria. Modelos simples de retornos de impulso são considerados. A diferença entre o momento da série de tempo e o impulso transversal, com especial atenção às fontes de lucro para cada um, é esclarecido tanto teoricamente como empiricamente. Os motivos teóricos e empíricos para a eficácia da ponderação da volatilidade são fornecidos e a relação de impulso com dispersão e volatilidade em seção transversal é examinada.
Mostramos que a rentabilidade das estratégias de impulso das séries temporais sobre futuros de commodities em toda a história é fortemente sensível ao dia de início. Usando retornos diários com períodos de formação de 252 dias e períodos de espera de 21 dias, o índice de Sharpe depende de se um começar no primeiro dia, no segundo dia, e assim por diante, até o vigésimo primeiro dia. Essa sensibilidade é maior para períodos de negociação mais curtos. Os mesmos resultados também ocorrem na simulação de retornos independentes e identicamente lognormalmente distribuídos, mostrando que este não é apenas um padrão empírico, mas uma questão fundamental com as estratégias de impulso. Os gerentes de portfólio devem estar cientes desse risco latente: começar a negociar a mesma estratégia no mesmo subjacente, mas um dia depois, mesmo depois de muitas décadas, transformar uma estratégia bem-sucedida em uma mal sucedida.
Mostramos que os retornos dos fundos de futuros gerenciados e dos CTAs podem ser explicados por estratégias simples de tendências, especificamente, estratégias temporárias em séries temporais. Discutimos a intuição econômica por trás dessas taxas, incluindo as potenciais fontes de lucro devido à sub-reação inicial e a reação exagerada às notícias. Mostramos empiricamente que essas estratégias seguindo as tendências explicam os retornos dos futuros administrados. Na verdade, as estratégias de impulso das séries temporais produzem grandes correlações e altos quadrados R com índices de Futuros Gerenciados e retornos de gerente individuais, incluindo os gerentes maiores e mais bem-sucedidos. Embora os maiores gerentes de Futuros Gerenciados tenham percebido significantes alfas nos benchmarks tradicionais de longo tempo, o controle de estratégias de impulso de séries temporais leva seus alphas a zero. Finalmente, consideramos uma série de questões de implementação relevantes para estratégias de impulso de séries temporais, incluindo gerenciamento de riscos, alocação de risco em classes de ativos e horizontes de tendências, freqüência de reequilíbrio de portfólio, custos de transação e taxas.
Em um modelo de equilíbrio com investidores informados racionalmente e investidores técnicos, mostramos que a média móvel dos preços do mercado passado pode prever o preço futuro, explicando o forte poder preditivo encontrado em muitos estudos empíricos. Nosso modelo também pode explicar o impulso da série de tempo de que os preços de mercado tendem a ser positivamente correlacionados no curto prazo e negativamente correlacionados no longo prazo.
Após grandes retornos positivos em 2008, os CTAs receberam maior atenção e alocações de investidores institucionais. O desempenho subsequente foi inferior à sua média a longo prazo. Isso ocorreu em um período após a maior crise financeira desde a grande depressão. Neste artigo, usando quase um século de dados, investigamos o que normalmente acontece com a estratégia central seguida por esses fundos em crises financeiras globais. Também examinamos o comportamento das séries temporais dos mercados negociados por CTAs durante esses períodos de crise. Nossos resultados mostram que, em um período prolongado após a crise financeira, a tendência após a retomada média é inferior à metade daqueles obtidos em períodos sem crise. A evidência de crises regionais mostra um padrão semelhante. Nós também achamos que os mercados de futuros não exibem a forte previsibilidade de retorno das séries temporais prevalentes em períodos sem crise, resultando em retornos relativamente fracos para tendências seguindo as estratégias nos quatro anos imediatamente após o início de uma crise financeira.
Apresentamos uma nova classe de estratégias de impulso que se baseiam nas médias de longo prazo dos retornos ajustados ao risco e testar essas estratégias em um universo de 64 contratos de futuros líquidos. Mostramos que esta estratégia de impulso ajustada ao risco supera a estratégia de impulso da série temporal de Ooi, Moskowitz e Pedersen (2018) para quase todas as combinações de períodos de espera e de retrocesso. Nós construímos medidas de volatilidade (risco) específicos de impulso (tanto dentro como entre classes de ativos) e mostramos que essas medidas de volatilidade podem ser usadas tanto para gerenciamento de risco como para o tempo de impulso. Descobrimos que a gestão do risco de impulso aumenta significativamente os índices de Sharpe, mas, ao mesmo tempo, leva a uma inclinação negativa mais acentuada e ao risco da cauda; ao contrário, combinando gerenciamento de riscos com o momento momentâneo elimina praticamente a afinidade negativa dos retornos de impulso e reduz significativamente o risco de cauda. Além disso, o gerenciamento do risco de impulso leva a uma exposição muito menor aos fatores de mercado, valor e momentum. Como resultado, o impulso gerido por risco retorna oferece benefícios de diversificação muito maiores do que o impulso padrão retorna.
Examinamos a relação entre os retornos das tendências seguidas eo risco macroeconômico. Nossos resultados demonstram que os fatores macroeconômicos têm uma relação estatisticamente significativa com as tendências seguidas, quando permitimos as exposições dinâmicas da estratégia. Achamos que esta exposição de risco variável desta vez permite seguir tendências para gerar retornos positivos em uma ampla gama de títulos e ciclos de mercado de ações. Pesquisas anteriores documentaram que a maioria dos retornos de impulso de seção transversal derivam de exposições de risco macroeconômico. No entanto, o mesmo não é verdade para seguir a tendência em que pelo menos metade do desempenho vem dos componentes inexplicados dos retornos de futuros. Quando relacionamos o desempenho com a volatilidade condicional das variáveis ​​macroeconômicas, nossos resultados mostram que a evolução da tendência gera maiores retornos nos períodos em que a incerteza econômica é baixa.
Analisamos as diferenças entre as estratégias baseadas no passado que diferem no condicionamento dos retornos passados ​​em excesso de zero (estratégia de séries temporais, TS) e retornos passados ​​em excesso da média transversal (estratégia transversal, CS). Achamos que a diferença de retorno entre essas duas estratégias deve-se principalmente a posições longas que variam no tempo que a estratégia TS assume no mercado agregado e, conseqüentemente, não tem implicações para o comportamento dos preços individuais dos ativos. No entanto, as estratégias TS e CS baseadas em índices financeiros como preditores às vezes são diferentes devido à seleção de ativos.
Os fundos de futuros administrados (às vezes chamados de CTAs) comercializam predominantemente as tendências. Existem várias maneiras de identificar as tendências, quer usando heurísticas ou medidas estatísticas, muitas vezes chamadas de "filtros". Duas medidas estatísticas importantes das tendências de preços são o impulso das séries temporais e os cruzamentos médios móveis. Mostramos empiricamente e teoricamente que esses indicadores de tendência estão intimamente conectados. Na verdade, eles são representações equivalentes em suas formas mais gerais, e também capturam muitos outros tipos de filtros, como o filtro HP, o filtro Kalman e todos os outros filtros lineares. Além disso, mostramos como os filtros de tendência podem ser equivalentemente representados como funções de preços passados ​​versus retornos passados. Nossos resultados unificam e ampliam uma série de estratégias de tendências e discutimos as implicações para os investidores.
Usando um conjunto de dados de 67 índices de capital e commodities de 1969 a 2018, este estudo documenta um significativo impulso da série de tempo nos mercados internacionais de ações e commodities. Este documento documenta ainda que os fundos de investimento internacionais tendem a comprar instrumentos que tenham tido bons resultados nos últimos meses, mas eles não vendem sistematicamente aqueles que apresentaram desempenho fraco nos mesmos períodos. Nós também descobrimos que um portfólio diversificado de curto prazo ganha os maiores lucros em condições extremas de mercado, mas as intervenções de mercado dos bancos centrais nos últimos anos parecem desafiar o desempenho dessas carteiras.
O objetivo deste artigo é, portanto, estudar essa ineficiência dentro das estratégias de temporização da série temporal (TSMOM) introduzidas em um artigo importante de Moscowitz, Ooi e Pedersen [2018]. Para este fim, apresentamos uma nova classe de estratégias de impulso, estratégias de temporização de séries temporais ajustadas ao risco (RAMOM), que se baseiam em médias de retornos de futuros passados, normalizados pela sua volatilidade. Testamos essas estratégias em um universo de 64 contratos de futuros líquidos e demonstramos que as estratégias RAMOM superam as estratégias TSMOM de Moscowitz, Ooi e Pedersen [2018] para estratégias de momentum de curto, médio e longo prazos. Além disso, os sinais comerciais RAMOM possuem outra característica útil e importante: são, naturalmente, menos dependentes da alta volatilidade. Em outras palavras, as estratégias padrão de TSMOM tendem a se correlacionar positivamente (ver, por exemplo, Hurst et al. [2018]) com uma posição de longo alcance (longa chamada, longa colocação) e, como resultado, melhor desempenho no mercado volátil ambientes. Como mostramos, isso é muito menos o caso dos retornos RAMOM porque, ao ajustar os sinais de negociação de acordo com a volatilidade, nós renderizamos RAMOM retorna mais sensível a novas informações precisamente no momento em que a volatilidade é baixa. Como resultado, o desempenho superior ao RAMOM em relação ao TSMOM tende a ser negativamente relacionado à volatilidade.
As estratégias de tendência seguem posições longas em ativos com retornos passivos positivos e posições curtas em ativos com retornos passados ​​negativos. Eles geralmente são construídos usando contratos de futuros em todas as classes de ativos, com pesos inversamente proporcionais à volatilidade e historicamente exibiram excelentes recursos de diversificação, especialmente durante as recessões dramáticas do mercado. No entanto, após uma performance impressionante em 2008, a estratégia de tendência não gerou retornos fortes no período pós-crise, 2009-2018. Este período caracterizou-se por um grande grau de co-movimento, mesmo em classes de ativos, com o universo investido sendo dividido aproximadamente nas sub-classes denominadas Risk-On e Risk-Off. Examinamos se o esquema de ponderação da volatilidade inversa, que efetivamente ignora as correlações em pares, pode se tornar subóptimo em um ambiente de correlações crescentes. Ao estender a alocação de risco-paridade de risco (contribuição de risco equivalente), construímos uma estratégia de tendência longa e curta que faz uso de princípios de paridade de risco. Não só melhoramos significativamente o desempenho da estratégia, mas também mostramos que esse aprimoramento é impulsionado principalmente pelo desempenho do esquema de ponderação mais sofisticado em regimes de correlação média extremos.
Moskowitz, Ooi e Pedersen (2018) mostram que o impulso da série de tempo entrega um alfa grande e significativo para uma carteira diversificada de vários contratos de futuros internacionais durante o período de 1985 a 2009. Embora confirmemos esses resultados com dados semelhantes, achamos que seus resultados são impulsionados pelos retornos de volatilidade (ou a chamada abordagem de paridade de risco para a alocação de ativos), em vez de em tempos de séries temporais. O alfa dos retornos mensais do momento da série temporal cai de 1,27% com pesos variáveis ​​de volatilidade para 0,41% sem escala de volatilidade, o que é significativamente menor do que o impulso transversal alfa de 0,95%. Usando posições com volatilidade, o retorno cumulativo de uma estratégia de momentum da série temporal é maior do que a estratégia de compra e retenção; No entanto, timeseriesmomentuman buy-and-hold oferece retornos cumulativos similares se não forem dimensionados por volatilidade. O desempenho superior da estratégia de impulso da série temporal também desaparece no período pós-crise mais recente de 2009 a 2018.
Embora se saiba muito sobre a financiarização de commodities, menos se sabe sobre como investir com rentabilidade em commodities. Os estudos existentes de Commodity Trading Advisors (CTAs) não abordam adequadamente esta questão porque apenas 19% dos CTAs investem exclusivamente em commodities, apesar do seu nome. Comparamos um modelo inovador de preços de ativos de quatro fator com os benchmarks existentes usados ​​para avaliar CTAs. Somente nosso modelo de quatro fator preços tanto commodity spot e prémio de risco de longo prazo. Em geral, nossos prémios de risco de commodities de preços modelo de quatro fatos melhor do que os prémios de risco de equidade de preços de modelos de fator de Fama-French e, portanto, é um ponto de referência apropriado para avaliar veículos de investimento em commodities.
Nos últimos 20 anos, o impulso ou a tendência seguindo as estratégias tornaram-se uma parte estabelecida da caixa de ferramentas do investidor. Apresentamos uma nova maneira de analisar as estratégias de impulso, observando o índice de informação (IR, retorno médio dividido pelo desvio padrão). Calculamos o IR teórico de uma estratégia de impulso e mostramos que se o impulso se deve principalmente à autocorrelação positiva nos retornos, o IR como função do período de formação do portfólio (look-back) é muito diferente do impulso devido à deriva (média Retorna). O IR mostra que, para períodos de aparência de alguns meses, é mais provável que o investidor aproveite a autocorrelação. No entanto, para períodos de observação mais próximos de 1 ano, o investidor é mais provável que aproveite a deriva. Comparamos os dados históricos com o IR teórico ao construir períodos estacionários. O estudo empírico conclui que há períodos / regimes onde a autocorrelação é mais importante do que a deriva na explicação do IR (particularmente antes de 1975) e outros onde a deriva é mais importante (principalmente após 1975). Concluímos nosso estudo, aplicando nossa estratégia de impulso para mais de 100 anos da Dow-Jones Industrial Average. Relatamos oscilações amortecidas no IR para períodos de aparência de vários anos e modelamos essas oscilações como uma inversão da taxa de crescimento médio.
Estudamos as estratégias de tendências temporárias (tendências-seguindo) em títulos, commodities, moedas e índices patrimoniais entre 1960 e 2018. Descobrimos que as estratégias de impulso foram consistentes tanto antes quanto depois de 1985, períodos marcados por fortes mercados urso e touro em títulos respectivamente. Nós documentamos uma série de propriedades de risco importantes. Primeiro, esses retornos são positivamente distorcidos, o que argumentamos é intuitivo, desenhando um paralelo entre as estratégias de impulso e uma estratégia de estratégia longa. Em segundo lugar, o desempenho foi particularmente forte nos piores ambientes de mercado de títulos e títulos, dando credibilidade à alegação de que a tendência-seguimento pode fornecer alfa de alíquota e equity. A imposição de restrições à estratégia para evitar que sejam de longo prazo ou títulos longos tenha potencial para melhorar ainda mais a crise alfa, mas reduz o retorno médio. Finalmente, examinamos como o desempenho variou em todas as estratégias de impulso com base em retornos com diferentes atrasos e aplicado a diferentes classes de ativos.
Propomos o uso de carteiras curtas e longas de estratégias de tendência para analisar suas características de risco e retorno. Achamos que suas exposições variam no tempo, dependem do estado do mercado, e que retorna aos seus lados longo e curto no mesmo recurso não são comparáveis. Além disso, apresentamos evidências de discernimento ocasional e tendencioso por parte dos gerentes da CTA. Nossas descobertas estão em linha com a hipótese dos mercados adaptativos, e a principal lição de nosso estudo é que os lados longo e curto devem ser diferenciados na análise de estratégias dinâmicas de investimento.
Este documento de pesquisa irá discutir as fontes de retorno estrutural (potenciais) para os índices de CTAs e commodities com base em uma revisão de artigos de pesquisa empírica de acadêmicos e profissionais. O documento abrange especificamente (a) as fontes de retorno a longo prazo para programas de futuros gerenciados e para índices de commodities; (b) as expectativas dos investidores e o contexto da carteira para estratégias de futuros; e (c) como comparar essas estratégias.
Os investidores geralmente estão preocupados com a asimetria negativa, ou a assimetria da cauda esquerda, de retorno de capital. Em resposta, eles buscam estratégias de mitigação de riscos para fornecer retornos compensatórios quando os mercados de ações caírem. Devido à sua associação com a eletricidade positiva, as estratégias de tendência são candidatos populares para mitigação de risco ou compensação de crise. Este artigo explora como um portfólio de tendências pode alcançar uma afinidade positiva e descobre que a variação do tempo no risco é o principal fator. Na verdade, qualquer carteira com uma relação positiva de Sharpe pode alcançar a afinidade positiva simplesmente variando o nível de risco assumido no tempo.
Neste artigo, os autores estudam o desempenho do investimento de tendência nos mercados globais desde 1880, ampliando a evidência existente em mais de 100 anos usando um novo conjunto de dados. Eles acham que em cada década desde 1880, o impulso das séries temporais apresentou retornos médios positivos com baixas correlações para as classes de ativos tradicionais. Além disso, o impulso da série de tempo tem funcionado bem em 8 dos 10 dos maiores períodos de crise ao longo do século, definidos como os maiores descontos para um portfólio de ações / obrigações de 60/40. Por fim, o impulso das séries temporais apresentou um bom desempenho em diferentes ambientes macro, incluindo recessões e booms, guerra e tempo de paz, regimes de taxas de juros baixos e baixos e períodos de alta e baixa inflação.
Hedging carteiras de ações contra o risco de grandes retiradas é notoriamente difícil e caro. A retenção e o contínuo rolamento, opções de venda de dinheiro no S & P 500 é uma estratégia muito onerosa, se confiável, para se proteger contra as vendas do mercado. A retenção de títulos do Tesouro dos Estados Unidos, ao mesmo tempo que proporciona um rendimento de longo prazo positivo e previsível, é geralmente uma estratégia de hedge-hedge não confiável, uma vez que a correlação negativa de vínculo-patrimônio pós-2000 é uma raridade histórica. As carteiras longas de proteção de crédito de ouro e longo parecem se sentar entre puts e bonds em termos de custo e confiabilidade. Em contraste com esses investimentos passivos, investigamos duas estratégias dinâmicas que parecem ter gerado desempenho positivo em longo prazo, mas também particularmente durante crises históricas: impulso das séries temporais de futuros e fatores de estoque de qualidade. O impulso de futuros tem paralelos com as estratégias de longo período de opções, permitindo que ele se beneficie durante as vendas de ações estendidas. A estratégia de estoque de qualidade leva posições longas em posições de alta qualidade e curtas em ações de empresas de menor qualidade, beneficiando de um efeito de "vôo para qualidade" durante as crises. Essas duas estratégias dinâmicas historicamente têm perfis de retorno não correlacionados, tornando-os hedges de risco de crise complementares. Examinamos ambas as estratégias e discutimos a forma como as diferentes variações podem ter ocorrido em crises, bem como em tempos normais, nos anos de 1985 a 2018.
O prémio de risco de Momentum é uma das premissas de risco alternativas mais importantes. Uma vez que é considerada uma anomalia de mercado, nem sempre é bem compreendida. Muitas publicações sobre este tópico são, portanto, baseadas em resultados avançados e empíricos. No entanto, alguns estudos acadêmicos desenvolveram um quadro teórico que nos permite compreender o comportamento de tais estratégias. Neste artigo, estendemos o modelo de Bruder e Gaussel (2018) ao caso multivariável. Podemos encontrar as principais propriedades encontradas na literatura acadêmica e obter novas descobertas teóricas sobre o prêmio de risco de impulso. Em particular, revisamos o retorno das estratégias seguindo a tendência e analisamos o impacto do universo de ativos no perfil risco / retorno. Comparamos também fatos estilizados empíricos com os resultados teóricos obtidos em nosso modelo. Finalmente, estudamos as propriedades de cobertura das estratégias de tendência.
Comparamos o desempenho de dois métodos de escalonamento de volatilidade em estratégias de impulso: (i) a abordagem de escala de volatilidade constante de Barroso e Santa-Clara (2018), e (ii) o método dinâmico de escalonamento de volatilidade de Daniel e Moskowitz (2018). Realizamos estratégias de impulso com base nessas duas abordagens em um pool de ativos consistindo em 55 contratos globais de futuros líquidos e comparamos esses resultados com a estratégia de tempo e as estratégias de compra e retenção. Achamos que a estratégia de impulso baseada no método de escalabilidade constante da volatilidade é a abordagem mais eficiente com um retorno anual de 15,3%.

QuantStart.
Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.
Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.
Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.
Por Michael Halls-Moore em 23 de junho de 2018.
Ao longo dos últimos anos, analisamos várias ferramentas para nos ajudar a identificar padrões exploráveis ​​nos preços dos ativos. Em particular, consideramos a econometria básica, a aprendizagem de máquinas estatísticas e as estatísticas bayesianas.
Embora essas sejam todas ferramentas modernas para a análise de dados, a grande maioria da modelagem de ativos na indústria ainda usa análises estatísticas de séries temporais. Neste artigo, vamos examinar a análise de séries de tempo, delinear seu escopo e aprender como podemos aplicar as técnicas a várias freqüências de dados financeiros.
O que é a análise da série de tempo?
Em primeiro lugar, uma série de tempo é definida como uma quantidade que é medida sequencialmente no tempo ao longo de algum intervalo.
Na sua forma mais ampla, a análise de séries temporais consiste em inferir o que aconteceu com uma série de pontos de dados no passado e tentar prever o que acontecerá com o futuro.
No entanto, vamos adotar uma abordagem estatística quantitativa para as séries temporais, assumindo que nossas séries temporais são realizações de seqüências de variáveis ​​aleatórias. Ou seja, vamos assumir que existe algum processo gerador subjacente para nossas séries temporais com base em uma ou mais distribuições estatísticas a partir das quais essas variáveis ​​são desenhadas.
A análise de séries temporais tenta entender o passado e prever o futuro.
Essa seqüência de variáveis ​​aleatórias é conhecida como um processo estocástico discreto (DTSP). Na negociação quantitativa, estamos preocupados em tentar ajustar modelos estatísticos a esses DTSPs para inferir relações subjacentes entre séries ou prever valores futuros para gerar sinais comerciais.
As séries temporais em geral, incluindo as que estão fora do mundo financeiro, geralmente contêm os seguintes recursos:
Tendências - Uma tendência é um movimento direcional consistente em uma série temporal. Essas tendências serão deterministas ou estocásticas. O primeiro nos permite fornecer um raciocínio subjacente à tendência, enquanto o último é uma característica aleatória de uma série que provavelmente não seríamos capazes de explicar. As tendências aparecem frequentemente em séries financeiras, em particular os preços de commodities, e muitos fundos do Consultor de Negociação de Mercadorias (CTA) usam modelos de identificação de tendência sofisticados em seus algoritmos de negociação. Variação sazonal - Muitas séries temporais contêm variações sazonais. Isto é particularmente verdadeiro em séries que representam vendas comerciais ou níveis climáticos. Em finanças quantitativas, muitas vezes vemos variações sazonais em commodities, particularmente aquelas relacionadas a períodos de crescimento ou variação anual de temperatura (como gás natural). Dependência serial - Uma das características mais importantes das séries temporais, particularmente as séries financeiras, é a correlação serial. Isso ocorre quando as observações das séries temporais que estão próximas entre si no tempo tendem a ser correlacionadas. O agrupamento de volatilidade é um aspecto da correlação serial que é particularmente importante no comércio quantitativo.
Como podemos aplicar a análise de séries temporais em finanças quantitativas?
Nosso objetivo como pesquisadores quantitativos é identificar tendências, variações sazonais e correlação usando métodos estatísticos de séries temporais e, em última análise, gerar sinais comerciais ou filtros baseados em inferências ou previsões.
Nossa abordagem será:
Previsão e previsão de valores futuros - Para negociar com sucesso, precisamos prever com precisão os preços dos ativos futuros, pelo menos em um sentido estatístico. Simular séries - Uma vez que identificamos as propriedades estatísticas das séries temporais financeiras, podemos usá-las para gerar simulações de cenários futuros. Isso nos permite estimar o número de negócios, os custos de negociação esperados, o perfil de retorno esperado, o investimento técnico e financeiro necessário na infra-estrutura e, portanto, o perfil de risco e a rentabilidade de uma determinada estratégia ou portfólio. Relacionamentos Infer - A identificação de relações entre séries temporais e outros valores quantitativos nos permite aprimorar nossos sinais comerciais através de mecanismos de filtração. Por exemplo, se podemos inferir como o spread em um par de câmbio varia de acordo com o volume de lance / pedido, podemos filtrar quaisquer negociações prospectivas que possam ocorrer em um período em que prevemos um amplo spread para reduzir os custos de transação.
Além disso, podemos aplicar testes estatísticos padrão (clássicos / freqüentadores ou bayesianos) a nossos modelos de séries temporais para justificar certos comportamentos, como a mudança de regime nos mercados de ações.
Software de análise de séries temporais.
Até o momento, utilizamos quase exclusivamente o C ++ e o Python para a implementação da nossa estratégia comercial. Ambos os idiomas são "ambientes de primeira classe" para escrever uma stack de troca inteira. Ambos contêm muitas bibliotecas e permitem uma construção "de ponta a ponta" de um sistema comercial exclusivamente dentro desse idioma.
Infelizmente, C ++ e Python não possuem extensas bibliotecas estatísticas. Esta é uma das suas deficiências. Por esse motivo, usaremos o ambiente estatístico R como meio de realizar pesquisas em séries temporais. R é bem adaptado para o trabalho devido à disponibilidade de bibliotecas de séries temporais, métodos estatísticos e capacidades de traçado direto.
Aprenderemos R em uma forma de resolução de problemas, pelo que novos comandos e sintaxe serão introduzidos conforme necessário. Felizmente, existem muitos tutoriais extremamente úteis para o R availabile na internet e vou apontá-los enquanto passamos pela sequência de artigos de análise de séries temporais.
Mapa de análise da série de tempo QuantStart.
Os artigos anteriores até à data sobre os temas de aprendizagem estatística, econometria e análise bayesiana, têm sido principalmente de natureza introdutória e não consideraram aplicações de tais técnicas para informações de preços modernas e de alta freqüência.
Para aplicar algumas das técnicas acima para dados de freqüência mais alta, precisamos de um quadro matemático para unificar nossa pesquisa. A análise de séries temporais fornece essa unificação e nos permite discutir modelos separados dentro de uma configuração estatística.
Eventualmente, utilizaremos ferramentas Bayesianas e técnicas de aprendizado de máquinas em conjunto com os seguintes métodos para prever o nível e a direção dos preços, agir como filtros e determinar "mudança de regime", ou seja, determinar quando nossas séries temporais mudaram seu comportamento estatístico subjacente.
O nosso roteiro da série temporal é o seguinte. Cada um dos tópicos abaixo formará seu próprio artigo ou conjunto de artigos. Uma vez que examinamos esses métodos em profundidade, estaremos em condições de criar alguns modelos modernos sofisticados para examinar dados de alta freqüência.
Introdução à Série de Tempo - Este artigo descreve a área de análise de séries temporais, seu escopo e como ele pode ser aplicado a dados financeiros. Correlação - Um aspecto absolutamente fundamental das séries temporais de modelagem é o conceito de correlação serial. Nós definiremos e descreveremos uma das maiores armadilhas da análise de séries temporais, a saber, que "a correlação não implica causalidade". Previsão - Nesta seção, vamos considerar o conceito de previsão, que está fazendo previsões de direção futura ou nível para uma série de tempo particular e como ela é realizada na prática. Modelos estocásticos - Passamos algum tempo a considerar modelos estocásticos no campo de preços de opções no site, nomeadamente com Geometric Brownian Motion e Stochastic Volatility. Vamos olhar para outros modelos, incluindo o ruído branco e modelos autorregressivos. Regressão - Quando temos tendências determinísticas (ao contrário de estocásticas) nos dados, podemos justificar sua extrapolação usando modelos de regressão. Consideraremos a regressão linear e não-linear, e contamos a correlação serial. Modelos estacionários - Modelos estacionários assumem que as propriedades estatísticas (ou seja, a média e variância) das séries são constantes no tempo. Podemos usar modelos de média móvel (MA), além de combiná-los com modelos autorregressivos para formar modelos ARMA. Modelos não estacionários - Muitas séries temporais financeiras não são estacionárias, ou seja, elas têm variável média e variância. Em particular, os preços dos ativos geralmente têm períodos de alta volatilidade. Para essas séries, precisamos usar modelos não estacionários, como ARIMA, ARCH e GARCH. Modelagem multivariada - Nós consideramos modelos multivariados no QuantStart no passado, ou seja, quando consideramos pares de ações de reversão média. Nesta seção, vamos definir mais rigorosamente a cointegração e analisar mais testes para isso. Também consideraremos os modelos vetoriais autorregressivos (VAR) [não devem ser confundidos com Value-at-Risk!]. Modelos de espaço-estado - State Space Modeling empresta uma longa história de teoria de controle moderna usada na engenharia para nos permitir modelar séries temporais com parâmetros que variam rapidamente (como a variável $ \ beta $ slope entre dois ativos cointegrados em uma regressão linear ). Em particular, consideraremos o famoso Filtro de Kalman e o Modelo de Markov Oculto. Este será um dos principais usos da análise bayesiana em séries temporais.
Como isso se relaciona com outros artigos estatísticos QuantStart?
Meu objetivo com o QuantStart sempre foi tentar esboçar o quadro matemático e estatístico para análise quantitativa e negociação quantitativa, desde o básico até as técnicas modernas mais avançadas.
Até o momento, passamos a maior parte do tempo em técnicas introdutórias e intermediárias. No entanto, agora vamos dirigir nossa atenção para as técnicas avançadas recentes utilizadas em empresas quantitativas.
Isso não só ajudará aqueles que desejam ganhar uma carreira na indústria, mas também dará aos comerciantes de varejo quantitativos entre vocês um conjunto de ferramentas muito mais amplo, bem como uma abordagem unificadora para negociação.
Tendo trabalhado na indústria anteriormente, posso afirmar com certeza que uma fração substancial de profissionais de fundos quantitativos usa técnicas muito sofisticadas para "caçar alfa".
No entanto, muitas dessas empresas são tão grandes que não estão interessadas em estratégias de "restrição de capacidade", ou seja, aquelas que não são escaláveis ​​acima de 1-2 milhões de dólares. Como varejistas, se pudermos aplicar uma estrutura de negociação sofisticada a essas áreas, podemos alcançar rentabilidade a longo prazo.
Nós eventualmente combinaremos nossos artigos sobre a análise de séries temporais, com a abordagem bayesiana para teste de hipóteses e seleção de modelos, juntamente com o código otimizado de C ++, R e Python, para produzir modelos de séries temporais não-lineares e não estacionários que podem trocar em alta - freqüência.
Agora que o software QSForex se aproximou da viabilidade para backtesting de alta freqüência de múltiplos pares de moedas, temos uma estrutura pré-fabricada para testar esses modelos, pelo menos nos mercados cambiais.
O próximo artigo da série discutirá a correlação e por que é um dos aspectos mais fundamentais da análise das séries temporais.
Apenas iniciando o comércio quantitativo?
3 razões para se inscrever para a lista de e-mails QuantStart:
1. Quant Trading Lessons.
Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!
2. Todo o conteúdo mais recente.
Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.
Real, dicas de negociação viáveis, sem tonturas.

Previsão da série de tempo.
A Previsão da Série de Tempo usa Regressão Linear para calcular uma linha de melhor ajuste ao longo de um período de tempo designado; Esta linha é então planejada para a frente um período de tempo definido pelo usuário.
O gráfico abaixo do contrato Mini-Dow Futures mostra o indicador de Previsão da Série de Tempo:
O gráfico acima ilustra como a linha de Previsão da Série de Tempo foi planejada para frente (no exemplo acima, 7 dias).
Geralmente, os comerciantes podem esperar que o preço volte para a linha Time Series Forecast quando os preços se desviaram. Portanto, um vago sinal de compra potencial pode ocorrer quando o preço está abaixo da linha e um potencial sinal de venda pode ocorrer quando o preço está muito acima da linha. No entanto, o quão longe o preço precisa variar da linha é muito subjetivo.
Um indicador técnico similar e indiscutivelmente superior é a Curva de Regressão Linear (ver: Curva de Regressão Linear).

QuantStart.
Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.
Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.
Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.
Por Michael Halls-Moore em 7 de outubro de 2018.
Neste artigo, quero mostrar-lhe como aplicar todo o conhecimento adquirido nas postagens anteriores da análise de séries temporais para uma estratégia de negociação no índice de mercado de ações S & amp; P500.
Veremos que, ao combinar os modelos ARIMA e GARCH, podemos superar de forma significativa uma abordagem "Buy-and-Hold" a longo prazo.
Visão geral da estratégia.
A idéia da estratégia é relativamente simples, mas se você quiser experimentar com isso, eu sugiro muito ler as postagens anteriores na análise de séries temporais para entender o que você está modificando!
A estratégia é realizada de forma contínua:
Para cada dia, $ n $, os dias anteriores de $ k $ dos retornos logarítmicos diferenciados de um índice de mercado de ações são usados ​​como uma janela para ajustar um ótimo modelo ARIMA e GARCH. O modelo combinado é usado para fazer uma previsão para os retornos do dia seguinte. Se a previsão é negativa, o estoque é curto no fechamento anterior, enquanto que se for positivo é desejado. Se a predição é a mesma direção que o dia anterior, nada será alterado.
Para essa estratégia usei o máximo de dados disponíveis do Yahoo Finance para o S & amp; P500. Eu peguei $ k = 500 $, mas este é um parâmetro que pode ser otimizado para melhorar o desempenho ou reduzir a redução.
O backtest é realizado de forma direta e vetorial usando R. Ele não foi implementado no backtester baseado em eventos Python até o momento. Assim, o desempenho alcançado em um sistema de comércio real seria provavelmente um pouco menor do que você poderia alcançar aqui, devido à comissão e derrapagem.
Implementação estratégica.
Para implementar a estratégia, vamos usar alguns dos códigos que criamos anteriormente na série de artigos de análise da série temporal, bem como algumas novas bibliotecas, incluindo o rugarch, que me foi sugerido por Ilya Kipnis no QuantStrat Trader.
Passarei pela sintaxe de uma forma passo a passo e apresentarei a implementação completa no final, bem como um link para o meu conjunto de dados para o indicador ARIMA + GARCH. Eu incluí o último porque me levou alguns dias no meu PC dekstop para gerar os sinais!
Você deve ser capaz de replicar meus resultados na íntegra, pois o código em si não é muito complexo, embora leve algum tempo para simular se você executá-lo na íntegra.
A primeira tarefa é instalar e importar bibliotecas necessárias em R:
Se você já possui as bibliotecas instaladas, basta importá-las:
Com isso feito, vamos aplicar a estratégia ao S & amp; P500. Podemos usar quantmod para obter dados que datam de 1950 para o índice. O Yahoo Finance usa o símbolo "^ GPSC".
Podemos então criar os retornos logarítmicos diferenciados do "Preço de fechamento" do S & amp; P500 e retirar o valor inicial de NA:
Precisamos criar um vetor, previsões para armazenar nossos valores de previsão em datas específicas. Definimos o comprimento do comprimento anterior para ser igual ao comprimento dos dados de negociação que temos menos $ k $, o comprimento da janela:
Nesta fase, precisamos fazer um ciclo todos os dias nos dados de negociação e ajustar um modelo adequado ARIMA e GARCH para a janela de rolamento de comprimento $ k $. Dado que tentamos 24 ajustes ARIMA separados e ajustamos um modelo GARCH, para cada dia, o indicador pode levar muito tempo para gerar.
Usamos o índice d como uma variável de loop e loop de $ k $ para o comprimento dos dados de negociação:
Em seguida, criamos a janela de rolagem, levando os retornos S & P500 e selecionando os valores entre $ 1 + d $ e $ k + d $, onde $ k = 500 $ para esta estratégia:
Usamos o mesmo procedimento que no artigo ARIMA para pesquisar todos os modelos ARMA com $ p \ in \ $ e $ q \ in \ $, com a exceção de $ p, q = 0 $.
Nós envolvemos a chamada arimaFit em um bloco de tratamento de exceção R tryCatch para garantir que, se não conseguirmos um ajuste para um valor particular de $ p $ e $ q $, ignoramos e seguimos para a próxima combinação de $ p $ e $ q $.
Tenha em atenção que definimos o valor "integrado" de $ d = 0 $ (este é um $ d $ diferente para o nosso parâmetro de indexação!) E, como tal, nós somos realmente um modelo ARMA, em vez de um ARIMA.
O procedimento de looping nos fornecerá o modelo ARMA "melhor", em termos do Critério de Informação Akaike, que podemos usar para alimentar nosso modelo GARCH:
No próximo bloco de código, vamos usar a biblioteca do rugarch, com o modelo GARCH (1,1). A sintaxe para isso exige que configuremos um objeto de especificação ugarchspec que leve um modelo para a variância e a média. A variância recebe o modelo GARCH (1,1) enquanto a média leva um modelo ARMA (p, q), onde $ p $ e $ q $ são escolhidos acima. Também escolhemos a distribuição sged para os erros.
Uma vez que escolhemos a especificação, realizamos o ajuste real do ARMA + GARCH usando o comando ugarchfit, que leva o objeto de especificação, os retornos $ k $ do S & amp; P500 e um solucionador numérico de otimização. Escolhemos usar o híbrido, que tenta diferentes solucionadores para aumentar a probabilidade de convergência:
Se o modelo GARCH não converge, simplesmente estabelecemos o dia para produzir uma previsão "longa", o que é claramente um palpite. No entanto, se o modelo converge, então emitimos a data e a direção de previsão de amanhã (+1 ou -1) como uma seqüência de caracteres em que ponto o ciclo está fechado.
Para preparar a saída para o arquivo CSV, criei uma seqüência de caracteres que contém os dados separados por uma vírgula com a direção de previsão para o dia seguinte:
O penúltimo passo é a saída do arquivo CSV para o disco. Isso nos permite levar o indicador e usá-lo em software de backtesting alternativo para análise posterior, se assim desejar:
No entanto, há um pequeno problema com o arquivo CSV como está no momento. O arquivo contém uma lista de datas e uma previsão para a direção de amanhã. Se nós estivéssemos a carregar isso no código de backtest abaixo, como seria o caso, nós realmente estaríamos apresentando um viés avançado porque o valor de previsão representaria dados não conhecidos no momento da predição.
Para explicar isso, precisamos simplesmente mover o valor previsto um dia antes. Descobriu que isso era mais direto usando o Python. Como não quero assumir que você tenha instalado bibliotecas especiais (como os pandas), eu mantive o Python puro.
Aqui está o pequeno script que traz esse procedimento. Certifique-se de executá-lo no mesmo diretório que o arquivo forecast. csv:
Neste ponto, agora temos o arquivo de indicador corrigido armazenado em forecast_new. csv. Uma vez que isso leva uma quantidade substancial de tempo para calcular, forneci o arquivo completo aqui para você se baixar:
Resultados da Estratégia.
Agora que geramos o nosso arquivo CSV indicador, precisamos comparar seu desempenho com "Comprar e aguardar".
Em primeiro lugar, lemos o indicador do arquivo CSV e o armazenamos como spArimaGarch:
Em seguida, criamos uma interseção das datas para as previsões ARIMA + GARCH e o conjunto original de retornos da S & P500. Podemos então calcular os retornos para a estratégia ARIMA + GARCH multiplicando o sinal de previsão (+ ou -) pelo próprio retorno:
Uma vez que temos os retornos da estratégia ARIMA + GARCH, podemos criar curvas de equidade para o modelo ARIMA + GARCH e "Comprar e aguardar". Finalmente, nós os combinamos em uma única estrutura de dados:
Finalmente, podemos usar o comando xyplot para traçar as duas curvas de equidade no mesmo gráfico:
A curva patrimonial até 6 de outubro de 2018 é a seguinte:
Curva de capital da estratégia ARIMA + GARCH vs "Comprar e manter" para o S & P500 a partir de 1952.
Como você pode ver, ao longo de um período de 65 anos, a estratégia ARIMA + GARCH superou significativamente "Buy & amp; Hold". No entanto, você também pode ver que a maior parte do ganho ocorreu entre 1970 e 1980. Observe que a volatilidade da curva é bastante mínima até o início dos anos 80, altura em que a volatilidade aumenta significativamente e os retornos médios são menos impressionantes.
Claramente, a curva de equidade promete ótimo desempenho durante todo o período. No entanto, essa estratégia realmente teria sido negociável?
Em primeiro lugar, consideremos o fato de que o modelo ARMA só foi publicado em 1951. Não foi amplamente utilizado até a década de 1970, quando Box & amp; Jenkins discutiu isso em seu livro.
Em segundo lugar, o modelo ARCH não foi descoberto (publicamente!) Até o início dos anos 80, pela Engle, e o próprio GARCH foi publicado por Bollerslev em 1986.
Em terceiro lugar, este "backtest" realmente foi realizado em um índice de mercado de ações e não um instrumento fisicamente negociável. Para obter acesso a um índice como este, teria sido necessário negociar futuros S & P500 ou uma réplica Exchange Traded Fund (ETF), como SPDR.
Por isso, é realmente apropriado aplicar esses modelos a uma série histórica antes da invenção? Uma alternativa é começar a aplicar os modelos a dados mais recentes. Na verdade, podemos considerar o desempenho nos últimos dez anos, de 1 de janeiro de 2005 a hoje:
Curva de capital da estratégia ARIMA + GARCH vs "Comprar e manter" para o S & P500 de 2005 até hoje.
Como você pode ver, a curva de equidade permanece abaixo de um Buy & amp; Mantenha a estratégia por quase 3 anos, mas durante a queda no mercado de ações de 2008/2009, ela supera demais. Isso faz sentido porque é provável que haja uma correlação serial significativa nesse período e será bem capturada pelos modelos ARIMA e GARCH. Uma vez que o mercado se recuperou após 2009 e entra no que parece ser mais uma tendência estocástica, a performance do modelo começa a sofrer mais uma vez.
Note-se que esta estratégia pode ser facilmente aplicada a diferentes índices do mercado de ações, ações ou outras classes de ativos. Eu o encorajo a tentar pesquisar outros instrumentos, pois você pode obter melhorias substanciais nos resultados aqui apresentados.
Próximos passos.
Agora que terminamos de discutir a família de modelos ARIMA e GARCH, quero continuar a discussão da análise de séries temporais considerando processos de memória longa, modelos de espaço estadual e séries temporais cointegradas.
Estas áreas subsequentes de séries temporais nos apresentarão modelos que podem melhorar nossas previsões além das que eu mostrei aqui, o que aumentará significativamente nossa lucratividade comercial e / ou reduzirá o risco.
Aqui está a listagem completa para geração de indicadores, backtesting e traçado:
E o código Python para aplicar a forecast. csv antes de reimportar:
Apenas iniciando o comércio quantitativo?
3 razões para se inscrever para a lista de e-mails QuantStart:
1. Quant Trading Lessons.
Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!
2. Todo o conteúdo mais recente.
Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.
Real, dicas de negociação viáveis, sem tonturas.

Комментариев нет:

Отправить комментарий